Lindau Nobel Laureate Physics Meeting 2016

Probably one of the most excited week of my life. For many reasons and in many contexts that week in Lindau was simply: magical. After the semester ends, and with new projects in hands, with two nice papers ready to submit, summer that knocks the door, and personally ready to turn on the page.  All these ingredients were put in a big pot: Lindau together with nice weather, superb small Bavarian town and hosted by a wonderful local family. I did good friends and met super bad-ass smart people. I had keratosis pilaris (or chicken skin) when I saw for the first time 29 Nobels just there in front (couple of meters). Ensemble of the Vienna Philharmonic Orchestra play intro and a repertoire of nice melodies. An <speechless> speech by the President of Austria who shared his memories with Austrian scientists who were close friends.

All these memories I will take it with me, as much as I can and as a long as I can. Those feelings are special, not only provide further understanding of how I work, but also how humans do. We are such “complex machines” with intricate thoughts, outburst of anger, rush of tenderness, spams of fears yet banal, at the time sophisticated.

For over a week I scout patiently and listen to each of the Nobels. Carefully selected my questions and privately or publicly asked. I would like to share some of the pictures I took either with Nobel laurates or with good friend I had the pleasure to met.


Panel Discussion: Glimpses Beyond the Standard Model with Professors Chu, Gross, Kajita, Rubbia, CERN experts (live video) and moderator F. Pauss.


Keynote of Prof. Roy J. Glauber


Personal archive (photos) Prof. Glauber. Left: Pauli (Switzerland playing football) Right: Heisenberg and Pauli looking at top spinning.


Left: Prof. Kajita (we had dinner together).  Prof. Josephson,  and bottom: Prof. Deisenhofer (we also had dinner together).


Left: Marie-Curie delegation preselected by the European Union. Right: young scientist from India delegation.

First Superhydrides meeting in Rome

In past May (2016) I attended the first edition of the International Workshop in “Superhydrides  Towards Room Temperature Superconductivity: Hydrides and More” . This was a very important meeting because it gathers the world-wide experts (experimentalists and theoreticians) in this matter. The urgent of the meeting was motivated by the 200 K superconductivity discovered only few months ago.

The venue was the CNR headquarters in Rome. Needless to says that I have been never disappointed by the quality of the food, and the Italian lifestyle, besides that I could  have the chance to practice my Italian.   I have had great discussions with many good friends also attending the workshop and I also had the opportunity to show my latest results. The great outcome is that now I have a nice collaboration with a world-leading experimentalist group in superhydrides. Stay tuned for, hopefully nice and exciting results !

Superhydrides meeting in Rome


International collaboration demonstrates reliability of quantum simulations for materials design

An international collaboration with colleagues from over 30 universities and institutes to investigated to what extent quantum simulations of material properties agree when they are performed by different researchers and with different software. Thanks to an online collaboration, they successfully demonstrated that the most recent generations of codes agree well, in contrast to earlier generations. Their study appeared in week’s edition of Science.

Reproducibility does not come easily

It’s a corner stone of science: independent yet identical experiments should produce identical results. Only in this way can science identify ‘laws’, which lead to new insight and new technologies. However, several recent studies have pointed out that such reproducibility does not always come spontaneously. In scientific areas as diverse as psychology research and genetic research, cases were identified where repeating previous experiments led to very different results. Even predictions by computer codes require caution, since the way in which theoretical models are implemented may affect simulation results. This is a reason for concern in any field of research that critically depends on computer simulations. For the study and design of materials, for instance, there are several independent software packages available based on quantum physics. They are moreover being used increasingly often in automated procedures with limited human supervision. It is therefore essential to know to what extent predicted materials properties depend on the code that has been used.

Online collaboration brings experts together

Despite the need for reliable property predictions of materials, the reproducibility of quantum simulations had not been investigated systematically before. This is mainly because there is no single person sufficiently skilled in all existing codes. Scientists from the University of Basel and Max-Planck Institute for Micstructructure Physics therefore joined forces with more than 60 colleagues, bringing together the know-how of over 30 prominent institutions. The researchers investigated 40 different methods to describe the influence of pressure in 71 different crystals. Among these methods was the ELK, Abnit and BigDFT codes. The team can now demonstrate that, although a few of the older methods clearly yield deviating results, predictions by recent codes are entirely equivalent. They moreover define a quality criterion that allows the verification of future software developments against their extensive database. New test data are continuously added to a publicly available website (

The researchers involved hope that their work will  contribute to higher standards for materials property simulations, and that it will facilitate the development of improved simulation codes and methods: essential for the intelligent design of novel materials to address society’s challenges in the 21st Century. 

I have had the great opportunity to be part of this work “Reproducibility in density functional theory calculations of solids” which is now published in Science. If you need access to the paper do not hesitate.

Google’s neural network beats humans at the ancient game of Go

A neural net system built by Google has beaten the European champion in the Chinese game of Go, winning five out of five games and crossing a new threshold for machine intelligence.
In a recent paper published in Nature,  DeepMind researchers revealed how the system was constructed and how it was able to succeed where decades of previous Go systems have failed. Go has long been considered one of the hardest games to automate, making the new DeepMind system particularly interesting for artificial intelligence researchers. The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves.

They used a neural networks trained by combinations of supervised learning from human expert games, and reinforcement learning from games of self-play. “Without any lookahead search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play”, they said.

New hints on the metallization of Hydrogen

Recently scientist from the Edinburgh’s Centre for Science at Extreme Conditions  have come close to creating a long-sought new state for hydrogen. The group used a set-up called a diamond anvil cell to compress its sample of molecular hydrogen. This apparatus is essentially two gems that have been placed in opposition to each other. Their polished tips, comparable in size to the width of a human hair, are made to press into a cavity containing the sample.

In their experiments, the scientists are able to achieve in excess of 350 gigapascals (3.5 million atmospheres) at room temperature. These pressures are not dissimilar to what would be experienced at the centre of the Earth. The big squeeze on the molecules of hydrogen gas turns them first into a liquid and then into a solid.


As the pressure gets ever more intense, the atoms in the hydrogen molecules pack closer and closer together,
and the electrical conductivity in the crystalline material increases.
Ultimately, the hydrogen atoms should stack so efficiently that their electrons become shared -just as in a metal. However, the team does not quite see this phase, but rather something that is probably just short of it. The work puts new constraints on where the full metallic hydrogen phase might exist:  possibly below 450 gigapascals at room temperature.

The ambient temperature is very significant, because if metallic hydrogen can ultimately be produced this way it opens the door potentially to a new type of perfect (zero resistance) conductor – a material to boost the performance of next-generation computers. “It’s been predicted that metallic hydrogen could be a room-temperature superconductor, which is still yet to be achieved with any material…
Scientists are also fascinated by metallic hydrogen because they think it may account for a large fraction of the internal composition of planets such as Jupiter.
Link to the original work published in Nature (letter) on January 7th, 2016.
BBC reportage.


Yet another superconductor above 100 K ?

Following the recent discovery of very high temperature conventional superconductivity in sulfur hydride (critical temperature Tc of 203 K). Experimentalist have shown results on the covalent hydride phosphine (PH3) which also exhibits a high Tc > 100 K at pressure P > 200 GPa. However, neither the exact composition nor the crystal structure of the superconducting phase have been conclusively determined. In our latest work (December 7, 2015) the phase diagram of P-H was extensively explored by means of ab initio crystal structure predictions. The results did not supported the existence of thermodynamically stable PHx compounds, which exhibit a tendency for elemental decomposition at high pressure even when vibrational contributions to the free energies are taken into account. Although the lowest energy phases of PH1,2,3 display Tc’s comparable to experiments, it remains uncertain if the measured values of Tc can be fully attributed to a phase-pure compound of PH. Link to our work here. This work is featured as en Editor’s Suggestion published in  Rapid. Comm. Phys Rev. B (2016).


Superconductivity under high pressure at minus 70 degrees Celsius

Researchers at the Max Planck Institute for Chemistry in Mainz and the Johannes Gutenberg University Mainz observed that hydrogen sulfide becomes superconductive at minus 70 degree Celsius —when the substance is placed under a pressure of 1.5 million bar. This corresponds to half of the pressure of the earth’s core. With their high pressure experiments the researchers in Mainz have thus not only set a new record for superconductivity— their findings have also highlighted a potential new way to transport current at room temperature with no loss.

The work was published in Nature Materials Journal (link) on August 17, 2015. The first original results were released in Cond. Mat. (arxiv) back on December 2014.


Soon after the discovery in the H-S system, we predicted another system with fairly similar characteristics: transition temperatures of the order of 100 K could be reached in principle in H-Se system at lower pressures. This research is publicly available in arxiv and it was first show on 26 January 2014.

Superconductivity in group-IV honeycomb materials

Our work has just been published in Physical Review B  !

disilicidesIn this theoretical work, we studied in detail the electron-phonon superconductivity of honeycomb MX_2 layered structures where X is one element of group IV (C, Si, or Ge) and M is an alkali or an alkaline-earth metal.  Among the studied compositions we predict a novel compounds energetically stable and showing relatively high transition temperatures of superconductivity:  7 K in RbGe_2 , 9 K in RbSi_2, and 11 K in SrC_2. All these compounds feature a strongly anisotropic superconducting gap. Our results show that despite the different doping levels and structural properties, the three families of materials fall into a similar description of their superconducting behavior. This allows us to estimate an upper critical temperature of about 20 K for the class of intercalated group-IV structures, including intercalated graphite and doped graphene.


Thesis defense


Bonjour a tous! Je suis très content de pouvoir inviter toutes les personnes intéressantes que j’ai rencontré ici, à Lyon et de manière générale en France à deux événement très importants dans ma vie. D’abord, la soutenance publique de ma thèse, et deuxièmement le fameux pot de thèse. La soutenance de thèse se dérouleront dans la salle de conférence de la bibliothèque universitaire de Lyon 1 sur le campus de la DOUA le mardi 18 septembre 2012 à 14:00 heures. Et après, le pot de thèse (si tout se passe comme il faut) sera dans un autre bâtiment vers, 16:30. Merci a la Pequetshina!

Kick-off ! Fysik-Aztek


Kick-off ! I am delighted to welcome you to my webpage.

Officially opened on Monday 27 august of 2012 at 09:00 local time (Paris).