SuperMUC will build a high pressure materials database.

Our computing project has just been accepted to run in the SuperMUC Petascale System.

With more than 2.3 millions of computing cores at our disposition the grant in its first phase will serve to construct a database for materials under pressure. The project will runs until 2020 including a second phase with possible extension of the requested computing allocation.

The supercomputer is SuperMUC ranked top 4 as the fastest supercomputer in Germany. It is composed of more than 147,000 computing cores.  SuperMUC (the suffix ‘MUC’ alludes to the IATA code of Munich’s airport) is operated by the Leibniz Supercomputing Centre, a European centre for supercomputing.

Stay tuned! coming months surely we will have very exciting news !

Structures of exohedrally decorated C60-Fullerenes

In our most recent publication we studied the exohedrally metal decorated carbon-fullerenes. These systems are a promising material for its good hydrogen adsorption (high concentrations and with optimal binding energies) properties. Since their geometry and type of coverage play a key role in determining the H2 adsorption mechanism, in this paper just accepted in Carbon Journal, we studied in a fully  ab-initio, unbiased structure fashion the configurational space of decorated C60 fullerenes.

Many of the hitherto postulated ground state structures are not ground states. We could determine the energetically lowest configurations for decorations with a varying number of decorating atoms for alkali metals, alkaline-earth metals as well as some other important elements and find that the dense uniform distribution of the decorating atoms over the surface of the C60, desired for hydrogen storage, can be obtained only for a few elements.  An understanding of the behavior of the decorating atoms can be obtained
by analyzing their bonding characteristics.

Searching hole-electron substitutional dopants for TCO technologies

The combination of optical transparency and high electrical conductivity enables transparent conductive oxide (TCO) materials to be used for a wide range of applications -from simple smart window coatings to OLEDs and futuristic see-through displays.  Doped tin-dioxide (SnO2) is an important semiconductor that is already used for these applications. However, in order to uncover the entire potential of this material in more advanced applications of  optoelectronics further improvements in electrical properties are necessary.

We conducted an extensive search for useful substitutional dopants of SnOfor which a novel and well-converged protocol was used. The entire periodic chart was scanned for stable charges and hole-electron dopants.  Our finding are in excellent agreement with current known dopants, besides we predicted other possible substitutional dopants that have been not experimentally examined to date.

This work has been just accepted (link here) and appeared in Chemistry of Materials.


Resolving the open controversies on the anomalous #superconducting trends in metastable phases of #Phosphorus

Among elemental compounds, the high-pressure superconducting phase diagram of phosphorus is one of the most complex. In this work, we measured electrical resistivity and performed ab initio superconductivity calculations in order to solve, for the first time the open controversies on the anomalous superconducting trends. Our work forms on a single picture a consistent scenario of multiple metastable structures which coexist beyond their thermodynamical stability range.

These metastable structures exhibit critical temperatures, which are  distinctively higher than the putative ground-state structures, suggesting that the selective stabilization of metastable phases represents a viable strategy to improve superconductivity properties on conventional superconductors.

This work is just highlighted this month ad an Editor’s Suggestion and published in Phy. Rev. Materials. (see my Publications)


Layered binaries as candidates for hard-magnets

For the most recent work on hard-magnetic systems we focused in binaries stacked layers of FePt, MnAl and MnGa. In this work an enhancement of the  mangetocrystalline  anisotropy was calculated for specially stacked structures. After a long search and great effort of the wonderful team of collaborators (special thanks and all the credit goes to my  friend Yu Ichiro Matsuchita) you can read now this research published in Annalen der Physik (link).

Piz Daint 3rd fastest supercomputer

The supercomputer ranking published on 19 June 2017, places Switzerland’s 19.6 petaflop Piz Daint supercomputer third in the world after Sunway TaihuLight and Tianhe 2, two Chinese supercomputers. Piz Daint’s recent upgrades allowed it to climb five positions up the ranking.

With a performance of 93 petaflops, China’s TaihuLight is by far the most powerful number-cruncher on the planet. Tianhe-2, which translates to Milky Way-2, comes in second at 33.9 petaflops, losing its number one spot in June 2016.

The Piz Daint computer, run by the Swiss National Supercomputing Centre (CSCS) is located the commune of Manno near Lugano. Named after a peak in the Alps, it is the most powerful computer in Europe. The monster computer is used by Switzerland’s weather service for climate modelling, the Swiss Institute of Particle Physics, the Human Brain Project and numerous others.

CSCS was created in 1985 (what a coincidence! )  after the Swiss government decided the country needed to invest in computing. The CSCS computing centre uses as much electricity every day as a small town. About a third of this electricity is used for cooling – computers get hot and must be cooled otherwise they melt. Piz Daint is cooled with up to 760 litres of water per second from nearby Lake Lugano. Using cool water from the lake significantly reduces overall electricity consumption. The water, taken 45m down is around 6 degrees. For ecological reasons, the water returning to the lake must never be over 25 degrees.

This is the first time since 1996, when three Japanese supercomputers captured the top three spots, that the United States has failed to secure a top-three position. The US still claims five of the top ten supercomputers, more than any other nation.

Thanks to this computer and the grant for our project, in following months we will have interesting results on different classes of materials.

The record of running cores for my calculations in Daint is 32,000 computing cores.

Cornell 2017: Hoffmann, Ashcroft, Mermin

During my days in Ithaca (Cornell University), I had the great opportunity to show part of my research work. I decided to present the research I had just finished at that time about the possibility to induce a metallic state in ice under pressure and upon doping; thinking that I could attract more attention and get more input for my research.

Lucky me, that week Prof. Hemley was visiting Cornell and could attend my talk. Expert in high pressure research. The talk was in a very informal and illustrative way, conveying, I believe successfully the main message. Next day, I received an email from Prof. Hoffmann, suggesting that “would be good to meet”. After some email exchanges we agreed in a date.

Next day, nervous and with shaking hands I reach his office punctual within a second precision. After briefly introduce myself,  soon I realized that he knew everything and every single point from my project, he was inquiring questions, precise points that at the time weren’t clear to me. He is a very sharp person that have distilled knowledge over the years that simply with hand-gestures can explain complex concepts, in this case, bonding and high-pressure chemistry at the current state of the art.

I do not know really to whom I should thank, maybe destiny or the serendipity path (a complex set of taken decisions) that put me there, that day in that office. I had the great and unique chance to meet a Nobel Laureate. I received first hand criticism of my work and suggestions to improve, more ideas and the motivation to keep what I am doing.

More than 60 minutes of scientific discussion and inter-change of ideas. At the end the discussion started to slightly shift towards a more general topic, Science, times to be a scientific, old times, and at the very last elegantly he asked me from where it comes my accent.  He has been several times in Mexico, indeed I could verify that: beautiful pieces of art –distinguishable for the colors– hangs in his office (perhaps the biggest office I know to date).

I would like to share the picture of this nice event that definitive scratch a mark in my scientific path.


This text was wrote as a post-analysis when cruising from Labadee to Puerto Rico, SMEC conference 2017.

Computing allocation in CSCS granted for my project !

Our first computing grant was just accepted by the CSCS!

Last year I submitted a project requesting for 700 thousand computing nodes hours to run an exploration over hundreds of molecules. These systems are candidates to test under pressure, and upon doping for the potential to become high temperature superconductors. Last march 24th (2017) our request was accepted and the entire allocation was granted for a period of two years.

The computer is Piz Daint, the fastest supercomputer in Europe and 8 ranked world wide. This supercomputer is hosted by the Swiss National Supercomputing Centre(Italian: Centro Svizzero di Calcolo Scientifico; CSCS) which is the national high-performance computing centre of Switzerland  (Lugano-Cornaredo).

The interest of this project is double-fold goal, not only we aim to elucidate which systems are the best candidates to be synthesized and achieve room temperature superconductivity, but the throughout of the investigation will generate data that will be used to train machines to learn the “physics behind”. The second part of  this research is conducted by the expertise of our collaborators from the Chemical department, next door here in the University of Basel.

Stay tuned! coming months surely we will have exciting news !

The elephant in the room of density-functional theory calculations

While basis set convergence sounds straightforward (though time-consuming) it is hard to rule out that underlying assumptions in  the design of the basis set influences the results.  However, converged basis set DFT results are needed to separate basis set errors from errors due to the functional. Multiwavelets, a systematic and adaptive multiresolution numerical solution of the one-electron problem, is now the basis set that can reach the highest precision.
Together with our collaborators in Norway and U.S.A, we show in our recent paper that LDA, PBE and PBE0 total energies, atomization energies, and dipoles moments for more than 211 molecules that are converged with respect to basis set to μHartree accuracy. Furthermore these numbers were compared to other basis set such as Gaussian-type orbitals (GTOs), all-electron numeric atom-centered orbitals (NAOs) and full-potential augmented plane wave (APW) calculations. In the case of atomization energies, a quintuple GTO basis set (aug-cc-pV5Z) is needed to reach a 1 kcal/mol accuracy in both MAE and RMSE. For aug-cc-pVQZ the MAE is below 1 kcal/mol, but the RMSE is about 1.5 kcal/mol.  Perhaps more importantly, the maxAE goes from ca 10 to 2-5 kcal/mol on going from quadruple to pentuple basis set.  So even aug-cc-pV5Z cannot consistently reach the basis set limit for atomization energies!  This research has been just published in J. Phys. Chem. Lett. (link).

H2O ice as superconductor? yes, superconducting water !

We have recently investigated the possibility of achieve high-temperature superconductivity in hydrides under pressure by inducing metallization of otherwise insulating phases through doping, a path previously used to render standard semiconductors superconducting at ambient pressure. Following this idea, we study H_2O, which is one of the most abundant and well-studied substances in the universe! We identify nitrogen as the most likely and promising substitution/dopant. We show that for realistic levels of doping of a few percent, the phase X of ice becomes superconducting with a critical temperature of about 60 K at 150 GPa. In view of the vast number of hydrides that are strongly covalent bonded, but that remain insulating until rather large pressures.  This could open new search paths in the quest towards the room-temperature superconductivity. Link to acces to the arXiv on-line version.


The image shows the water molecule at ambient condition of pressure, at high pressure and low temperature. The crystal of water transform to a symmetric proton phase above 70 GPa. We use this phase, which is covalently bonded with to hole dope it with nitrogen at different concentrations.