Category: Social

Transparent electronic conductors gaining momentum !

Our latest research has been featured in the portal of CSCS (ETH) –Swiss National supercomputer– and several websites, including PhysOrg and HPCwire! you can follow the original links here: Piz Daint Simulations Speed Work on Transparent Electronics

Revealing unexplored dopants in semiconducting materials

The advancement of transparent electronics, one of the most anticipated technological developments for the future, is currently inhibited by a shortage of high-performance p-type conductors. In materials, doping is the intentional introduction of impurities into an intrinsic semiconductor for the purpose of modulating its electrical and optical and structural properties. Recent demonstration of tin monoxide as …

Continue reading

Emergence of Perovskite (MAPI) phases upon little compression

Perovskites are among the most promising and versatile class of candidate compounds for new or improved materials in energy applications, including photovoltaics, superconductivity, and lasing. With the general formula ABX3, the perovskite structure consists of corner-sharing BX6 octahedra forming a three-dimensional (3D) framework that provides room for the A units in the resulting cuboctahedral cavities. …

Continue reading

Doping@HP the case of polyethylene: superconductivity!

High pressure is an exciting field that has evolved incredibly far since the pioneering work of Cailletet, Amagat and Bridgman. A substantial amount of research in the field of high pressure (post-Bridgman era) was triggered by the tantalizing idea of metalizing hydrogen (Wigner and Huntington transition) which dates back to the mid 30’s. The metalization …

Continue reading

Structures of exohedrally decorated C60-Fullerenes

In our most recent publication we studied the exohedrally metal decorated carbon-fullerenes. These systems are a promising material for its good hydrogen adsorption (high concentrations and with optimal binding energies) properties. Since their geometry and type of coverage play a key role in determining the H2 adsorption mechanism, in this paper just accepted in Carbon …

Continue reading

Searching hole-electron substitutional dopants for TCO technologies

The combination of optical transparency and high electrical conductivity enables transparent conductive oxide (TCO) materials to be used for a wide range of applications -from simple smart window coatings to OLEDs and futuristic see-through displays.  Doped tin-dioxide (SnO2) is an important semiconductor that is already used for these applications. However, in order to uncover the …

Continue reading

Piz Daint 3rd fastest supercomputer

The supercomputer ranking published on 19 June 2017, places Switzerland’s 19.6 petaflop Piz Daint supercomputer third in the world after Sunway TaihuLight and Tianhe 2, two Chinese supercomputers. Piz Daint’s recent upgrades allowed it to climb five positions up the ranking. With a performance of 93 petaflops, China’s TaihuLight is by far the most powerful number-cruncher …

Continue reading

Cornell 2017: Hoffmann, Ashcroft, Mermin

During my days in Ithaca (Cornell University), I had the great opportunity to show part of my research work. I decided to present the research I had just finished at that time about the possibility to induce a metallic state in ice under pressure and upon doping; thinking that I could attract more attention and …

Continue reading

Computing allocation in CSCS granted for my project !

Our first computing grant was just accepted by the CSCS! Last year I submitted a project requesting for 700 thousand computing nodes hours to run an exploration over hundreds of molecules. These systems are candidates to test under pressure, and upon doping for the potential to become high temperature superconductors. Last march 24th (2017) our …

Continue reading

H2O ice as superconductor? yes, superconducting water !

We have recently investigated the possibility of achieve high-temperature superconductivity in hydrides under pressure by inducing metallization of otherwise insulating phases through doping, a path previously used to render standard semiconductors superconducting at ambient pressure. Following this idea, we study HO, which is one of the most abundant and well-studied substances in the universe! We …

Continue reading