Jose Flores

Author's posts

Dec 18

Structures of exohedrally decorated C60-Fullerenes

In our most recent publication we studied the exohedrally metal decorated carbon-fullerenes. These systems are a promising material for its good hydrogen adsorption (high concentrations and with optimal binding energies) properties. Since their geometry and type of coverage play a key role in determining the H2 adsorption mechanism, in this paper just accepted in Carbon …

Continue reading

Nov 17

Searching hole-electron substitutional dopants for TCO technologies

The combination of optical transparency and high electrical conductivity enables transparent conductive oxide (TCO) materials to be used for a wide range of applications -from simple smart window coatings to OLEDs and futuristic see-through displays.  Doped tin-dioxide (SnO2) is an important semiconductor that is already used for these applications. However, in order to uncover the …

Continue reading

Oct 03

Gravitational waves

Electromagnetic radiation is not longer the only way to probe the universe: Gravitational waves are in!  Gravitational waves are ‘ripples’ in the fabric of space-time caused by some of the most violent and energetic processes in the Universe. Albert Einstein predicted the existence of gravitational waves in 1916 in his general theory of relativity. Einstein’s …

Continue reading

Jul 21

Resolving the open controversies on the anomalous #superconducting trends in metastable phases of #Phosphorus

Among elemental compounds, the high-pressure superconducting phase diagram of phosphorus is one of the most complex. In this work, we measured electrical resistivity and performed ab initio superconductivity calculations in order to solve, for the first time the open controversies on the anomalous superconducting trends. Our work forms on a single picture a consistent scenario …

Continue reading

Jul 04

Layered binaries as candidates for hard-magnets

For the most recent work on hard-magnetic systems we focused in binaries stacked layers of FePt, MnAl and MnGa. In this work an enhancement of the  mangetocrystalline  anisotropy was calculated for specially stacked structures. After a long search and great effort of the wonderful team of collaborators (special thanks and all the credit goes to …

Continue reading

Jun 21

Piz Daint 3rd fastest supercomputer

The supercomputer ranking published on 19 June 2017, places Switzerland’s 19.6 petaflop Piz Daint supercomputer third in the world after Sunway TaihuLight and Tianhe 2, two Chinese supercomputers. Piz Daint’s recent upgrades allowed it to climb five positions up the ranking. With a performance of 93 petaflops, China’s TaihuLight is by far the most powerful number-cruncher …

Continue reading

Apr 14

Cornell 2017: Hoffmann, Ashcroft, Mermin

During my days in Ithaca (Cornell University), I had the great opportunity to show part of my research work. I decided to present the research I had just finished at that time about the possibility to induce a metallic state in ice under pressure and upon doping; thinking that I could attract more attention and …

Continue reading

Mar 30

Computing allocation in CSCS granted for my project !

Our first computing grant was just accepted by the CSCS! Last year I submitted a project requesting for 700 thousand computing nodes hours to run an exploration over hundreds of molecules. These systems are candidates to test under pressure, and upon doping for the potential to become high temperature superconductors. Last march 24th (2017) our …

Continue reading

Mar 14

The elephant in the room of density-functional theory calculations

While basis set convergence sounds straightforward (though time-consuming) it is hard to rule out that underlying assumptions in  the design of the basis set influences the results.  However, converged basis set DFT results are needed to separate basis set errors from errors due to the functional. Multiwavelets, a systematic and adaptive multiresolution numerical solution of the …

Continue reading

Oct 20

H2O ice as superconductor? yes, superconducting water !

We have recently investigated the possibility of achieve high-temperature superconductivity in hydrides under pressure by inducing metallization of otherwise insulating phases through doping, a path previously used to render standard semiconductors superconducting at ambient pressure. Following this idea, we study HO, which is one of the most abundant and well-studied substances in the universe! We …

Continue reading