Home

Transparent electronic conductors gaining momentum !

Our latest research has been featured in the portal of CSCS (ETH) –Swiss National supercomputer– and several websites, including PhysOrg and HPCwire! you can follow the original links here: https://www.cscs.ch/science/chemistry-materials/transparent-electronics-research-gains-momentum/ Piz Daint Simulations Speed Work on Transparent Electronics https://phys.org/news/2019-01-transparent-electronics-gains-momentum.html

Read more

Revealing unexplored dopants in semiconducting materials

The advancement of transparent electronics, one of the most anticipated technological developments for the future, is currently inhibited by a shortage of high-performance p-type conductors. In materials, doping is the intentional introduction of impurities into an intrinsic semiconductor for the purpose of modulating its electrical and optical and structural properties. Recent demonstration of tin monoxide as …

Read more

Emergence of Perovskite (MAPI) phases upon little compression

Perovskites are among the most promising and versatile class of candidate compounds for new or improved materials in energy applications, including photovoltaics, superconductivity, and lasing. With the general formula ABX3, the perovskite structure consists of corner-sharing BX6 octahedra forming a three-dimensional (3D) framework that provides room for the A units in the resulting cuboctahedral cavities. …

Read more

Not all materials are metallic under pressure: tuning the gap !

Highly stable materials are usually wide-gap insulators, where covalency dominates the ionic exchange, such as in carbon (diamond), MgO, and LiH, to name a few.  In our latest work,  in collaboration with experimental teams in USA,  UK, and Japan we studied the enhanced stability of Sn3N4 to applied pressure and temperature. Our predicted phase transitions were confirmed by state-of-the-art Synchrotron X-ray diffraction and …

Read more